Background: Strings at the LHC An Effective Field Theory Phenomenology Future Directions Summary & Conclusions

Tensor Reggeons from Warped Space at the LHC

arXiv:0907.3496,1009.xxxx

Maxim Perelstein¹ Andrew P. Spray²

¹Cornell University, Ithaca NY ²TRIUMF, Canada

Santa Fe Summer Workshop, July 6th 2010

- Tensor means Spin 2 particles;
- Reggeons means String-inspired;
- Warped means Randall-Sundrum;
- LHC means Large Hot Chocolate.

- Tensor means Spin 2 particles;
- Reggeons means String-inspired;
- Warped means Randall-Sundrum;
- LHC means Large Hot Chocolate.

- Tensor means Spin 2 particles;
- Reggeons means String-inspired;
- Warped means Randall-Sundrum;
- LHC means Large Hot Chocolate.

- Tensor means Spin 2 particles;
- Reggeons means String-inspired;
- Warped means Randall-Sundrum;
- LHC means Large Hot Chocolate.

- Tensor means Spin 2 particles;
- Reggeons means String-inspired;
- Warped means Randall-Sundrum;
- LHC means Large Hot Chocolate.

Outline

- Background: Strings at the LHC
- 2 An Effective Field Theory
 - Matching to String Theory
 - Kaluza-Klein Decomposition
- Phenomenology
- Future Directions

There are two different conceptions of the traditional Hierarchy Problem. They lead to two different types of solution:

- Why is Λ_{SM} so small? \longrightarrow Raise cut-off scale.
 - Supersymmetry, Little Higgs Theories, Technicolour, . . .
- Why is M_{Pl} so large? \longrightarrow Lower scale of gravity.
 - Large Extra Dimensions (Arkani-Hamed, Dimopoulos & Dvali models)
 - Warped Extra Dimensions (Randall-Sundrum models)

The second class of solutions imply gravity at the LHC

There are two different conceptions of the traditional Hierarchy Problem. They lead to two different types of solution:

- Why is Λ_{SM} so small? \longrightarrow Raise cut-off scale.
 - Supersymmetry, Little Higgs Theories, Technicolour, ...
- Why is M_{Pl} so large? \longrightarrow Lower scale of gravity.
 - Large Extra Dimensions (Arkani-Hamed, Dimopoulos & Dvali models)
 - Warped Extra Dimensions (Randall-Sundrum models)

The second class of solutions imply gravity at the LHC

There are two different conceptions of the traditional Hierarchy Problem. They lead to two different types of solution:

- Why is Λ_{SM} so small? \longrightarrow Raise cut-off scale.
 - Supersymmetry, Little Higgs Theories, Technicolour, ...
- Why is M_{Pl} so large? \longrightarrow Lower scale of gravity.
 - Large Extra Dimensions (Arkani-Hamed, Dimopoulos & Dvali models)
 - Warped Extra Dimensions (Randall-Sundrum models)

The second class of solutions imply gravity at the LHC

There are two different conceptions of the traditional Hierarchy Problem. They lead to two different types of solution:

- Why is Λ_{SM} so small? \longrightarrow Raise cut-off scale.
 - Supersymmetry, Little Higgs Theories, Technicolour, . . .
- Why is M_{Pl} so large? \longrightarrow Lower scale of gravity.
 - Large Extra Dimensions (Arkani-Hamed, Dimopoulos & Dvali models)
 - Warped Extra Dimensions (Randall-Sundrum models)

The second class of solutions imply gravity at the LHC!

Quantum Gravity at the LHC

TeV-scale gravity as an effective field theory:

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_n rac{c_n}{(M_{grav})^n} \mathcal{O}_n.$$

For $E \gtrsim M_{grav}$, we need to know all the c_n !

We need the UV completion; but the cupboard of quantum gravity is pretty bare.

Perhaps the best motivated framework is String Theory.

Quantum Gravity at the LHC

TeV-scale gravity as an effective field theory:

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_n rac{c_n}{(M_{grav})^n} \mathcal{O}_n.$$

For $E \gtrsim M_{grav}$, we need to know all the $c_n!$

We need the UV completion;

but the cupboard of quantum gravity is pretty bare.

Perhaps the best motivated framework is String Theory.

String Theory at the LHC has been looked at previously:

- Work in flat ADD background;
- Construct SM-like String Theory;
- Compute parton-level (Veneziano) scattering amplitudes.

So all we need to do is repeat this for RS, right?

String Theory at the LHC has been looked at previously:

- Work in flat ADD background;
- Construct SM-like String Theory;
- Compute parton-level (Veneziano) scattering amplitudes.

So all we need to do is repeat this for RS, right?

String Theory at the LHC has been looked at previously:

- Work in flat ADD background;
- Construct SM-like String Theory;
- Compute parton-level (Veneziano) scattering amplitudes.

So all we need to do is repeat this for RS, right?

NO!

String Theory at the LHC has been looked at previously:

- Work in flat ADD background;
- Construct SM-like String Theory;
- Compute parton-level (Veneziano) scattering amplitudes.

So all we need to do is repeat this for RS, right?

NO!

Unfortunately, String Theory in RS not currently calculable. :(

(See Reece, Wang: 1003.5669[hep-ph]).

Background: Strings at the LHC
An Effective Field Theory
Phenomenology
Future Directions
Summary & Conclusions

I am not a String Theorist

If we don't have an RS String Theory, what can we do?

am not a String Theorist

I am a free man!

If we don't have an RS String Theory, what can we do?

Plan

- Identify characteristically Stringy phenomena.
 - High spin Regge resonances → Reggeons!
- Construct flat-space EFT to describe them.
- Covariantly generalise EFT to RS.
- Hope this is broadly descriptive of phenomenology.

am not a String Theorist

I am a free man!

If we don't have an RS String Theory, what can we do?

Plan

- Identify characteristically Stringy phenomena.
 - High spin Regge resonances → Reggeons!
- Construct flat-space EFT to describe them.
- Ovariantly generalise EFT to RS.
- Hope this is broadly descriptive of phenomenology.

Randall-Sundrum: A Refresher and Notation

RS Models are 5D orbifolds with a non-trivial warped geometry.

$$ds^2 = e^{-2k|y|} dx^{\mu} dx_{\mu} - dy^2; \qquad y \sim -y.$$

Define IR scale $\Lambda_{IR} \equiv k \, \mathrm{e}^{-k\pi R}$. UV Scales: $k \ll M_S \ll M_{Pl}$; $k \sim M_{Pl}/10$.

- SM states are zero modes of five dimensional fields;
- First "Higgsed" Model:
 - Fermions are localised in XD.
- Second "Higgsless" Model

Randall-Sundrum: A Refresher and Notation

RS Models are 5D orbifolds with a non-trivial warped geometry.

$$ds^2 = e^{-2k|y|} dx^{\mu} dx_{\mu} - dy^2; \qquad y \sim -y.$$

Define IR scale $\Lambda_{IR} \equiv k \, \mathrm{e}^{-k\pi R}$. UV Scales: $k \ll M_S \ll M_{Pl}$; $k \sim M_{Pl}/10$.

- SM states are zero modes of five dimensional fields;
- First "Higgsed" Model:
 - $\Lambda_{IR} \sim 1$ TeV;
 - Fermions are localised in XD.
- Second "Higgsless" Model

Randall-Sundrum: A Refresher and Notation

RS Models are 5D orbifolds with a non-trivial warped geometry.

$$ds^2 = e^{-2k|y|} dx^{\mu} dx_{\mu} - dy^2; \qquad y \sim -y.$$

Define IR scale $\Lambda_{IR} \equiv k \, \mathrm{e}^{-k\pi R}$. UV Scales: $k \ll M_S \ll M_{Pl}$; $k \sim M_{Pl}/10$.

- SM states are zero modes of five dimensional fields;
- First "Higgsed" Model:
 - $\Lambda_{IR} \sim 1$ TeV;
 - Fermions are localised in XD.
- Second "Higgsless" Model
 - $\Lambda_{IR} \sim 500 \text{ GeV}$;
 - Fermions are flat-in XD.

Regge Resonances in Flat Space

General result in flat space:

$$A_{str} \sim A_{SM} \times S(s,t)$$
.

S(s,t) is Veneziano amplitude:

$$S(s,t) = \frac{\Gamma(1-\alpha's)\Gamma(1-\alpha't)}{\Gamma(1-\alpha's-\alpha't)}.$$

This has infinite set of poles at $\alpha' s = n$ for $n \ge 1$.

Near nth pole, can reproduce string amplitudes with particles of mass $n/\alpha' \equiv nM_S^2$.

Limitation: EFT invalid far from pole

Regge Resonances in Flat Space

General result in flat space:

$$A_{str} \sim A_{SM} \times S(s,t)$$
.

S(s,t) is Veneziano amplitude:

$$S(s,t) = \frac{\Gamma(1-\alpha's)\Gamma(1-\alpha't)}{\Gamma(1-\alpha's-\alpha't)}.$$

This has infinite set of poles at $\alpha' s = n$ for $n \ge 1$.

Near nth pole, can reproduce string amplitudes with particles of mass $n/\alpha' \equiv nM_S^2$.

Limitation: EFT invalid far from pole!

Regge Resonances in Flat Space II

Cullen, Peskin & Perelstein, hep-ph/0001166.

In 4d flat space Stringy QED, find at n = 1:

- One spin two state;
- One vector state;
- Several Scalars.

First state is most interesting: Unusually high spin.

All interactions determined by:

- Gauge coupling e;
- String scale M_S .

Regge Resonances in Flat Space II

Cullen, Peskin & Perelstein, hep-ph/0001166.

In 4d flat space Stringy QED, find at n = 1:

- One spin two state;
- One vector state;
- Several Scalars.

First state is most interesting: Unusually high spin.

All interactions determined by:

- Gauge coupling e;
- String scale M_S.

Regge Resonances in Curved Space

Effective Theory of Spin-2 Gluon Partner:

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\textit{free}} + \frac{g_s}{\sqrt{2} M_S} \left(F^{\mu\rho} F_{\rho}^{\nu} - \frac{1}{4} F^{\rho\sigma} F_{\rho\sigma} \eta^{\mu\nu} \right) B_{\mu\nu} \\ &\quad + \frac{\mathrm{i} g_s}{\sqrt{2} M_S} \left(\partial_{\mu} \bar{Q} \gamma_{\nu} q - \bar{Q} \gamma_{\nu} \partial_{\mu} q \right) B^{\mu\nu}. \end{split}$$

To produce our 'RS String Model' we take the above and:

- Extend to 5D (trivial);
- Covariantly generalise (tricky);
 - Limitation: don't know that Reggeon masses still M_S !
 - Limitation: lose any curvature-dependent interactions!
 - Integrate over extra dimension (simple).

Regge Resonances in Curved Space

Effective Theory of Spin-2 Gluon Partner:

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\textit{free}} + \frac{g_s}{\sqrt{2} M_S} \left(F^{\mu\rho} F_{\rho}^{\nu} - \frac{1}{4} F^{\rho\sigma} F_{\rho\sigma} \eta^{\mu\nu} \right) B_{\mu\nu} \\ &\quad + \frac{\mathrm{i} g_s}{\sqrt{2} M_S} \left(\partial_{\mu} \bar{Q} \gamma_{\nu} q - \bar{Q} \gamma_{\nu} \partial_{\mu} q \right) B^{\mu\nu}. \end{split}$$

To produce our 'RS String Model' we take the above and:

- Extend to 5D (trivial);
- Covariantly generalise (tricky);
 - Limitation: don't know that Reggeon masses still M_S !
 - Limitation: lose any curvature-dependent interactions!
 - Integrate over extra dimension (simple).

Regge Resonances in Curved Space

Effective Theory of Spin-2 Gluon Partner:

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\textit{free}} + \frac{g_{\textit{s}}}{\sqrt{2} M_{\textit{S}}} \left(F^{\mu \rho} F_{\rho}^{ \nu} - \frac{1}{4} F^{\rho \sigma} F_{\rho \sigma} \eta^{\mu \nu} \right) B_{\mu \nu} \\ &\quad + \frac{\mathrm{i} g_{\textit{s}}}{\sqrt{2} M_{\textit{S}}} \left(\partial_{\mu} \bar{Q} \gamma_{\nu} q - \bar{Q} \gamma_{\nu} \partial_{\mu} q \right) B^{\mu \nu}. \end{split}$$

To produce our 'RS String Model' we take the above and:

- Extend to 5D (trivial);
- Covariantly generalise (tricky);
 - Limitation: don't know that Reggeon masses still M_S!
 - Limitation: lose any curvature-dependent interactions!
- Integrate over extra dimension (simple).

Massive Spin-2 Fields in RS A Small Digression

In flat space:

$$\mathcal{L} = \frac{1}{4} H_{\mu\nu\rho} H^{\mu\nu\rho} - \frac{1}{2} H_{\mu\nu}{}^{\nu} H^{\mu\rho}{}_{\rho} + \frac{1}{2} m^2 ((B_{\mu}{}^{\mu})^2 - B_{\mu\nu} B^{\mu\nu}).$$

Field Strength Tensor:

$$H_{\mu\nu\rho} \equiv \partial_{\mu}B_{\nu\rho} - \partial_{\nu}B_{\mu\rho}.$$

Massive Spin-2 Fields in RS A Small Digression

In flat space:

$$\mathcal{L} = \frac{1}{4} H_{\mu\nu\rho} H^{\mu\nu\rho} - \frac{1}{2} H_{\mu\nu}{}^{\nu} H^{\mu\rho}{}_{\rho} + \frac{1}{2} m^2 \left((B_{\mu}{}^{\mu})^2 - B_{\mu\nu} B^{\mu\nu} \right).$$

Field Strength Tensor:

$$H_{\mu\nu\rho} \equiv \partial_{\mu}B_{\nu\rho} - \partial_{\nu}B_{\mu\rho}.$$

Correct generalisation to RS space is non-trivial:

$$\begin{split} &\eta_{\mu\nu} \to g_{MN}; \qquad \partial_{\mu} \to \nabla_{M}; \qquad B_{\mu\nu}(y) = B_{\mu\nu}(-y); \\ &\Delta\mathcal{L} = \frac{3}{2}k^{2}\big((B_{M}^{M})^{2} - B_{MN}B^{MN}\big) - k\,\partial_{y}\,\mathrm{sgn}(y)\big((B_{\mu}^{\mu})^{2} - B_{\mu\nu}B^{\mu\nu}\big). \end{split}$$

The last term comes from expanding the Einstein-Hilbert action.

Four-Dimensional Decomposition

Have now produced our 5D "String" theory. So the question is:

What are the 4D physics?

States we expect:

$$B_{\mu\nu} \to 4 \mathrm{D} \; \mathrm{Spin} \; 2; \qquad B_{\mu\nu} \to 4 \mathrm{D} \; \mathrm{Spin} \; 1; \qquad B_{\nu\nu} \to 4 \mathrm{D} \; \mathrm{Spin} \; 0.$$

Continue to focus on Spin 2 state:

- Unusually high spin;
- Even under orbifold symmetry
 light compared to vector.

Note: Scalar also even under orbifold symmetry;
But odd (pathological?) behaviour, not disti

Four-Dimensional Decomposition

Have now produced our 5D "String" theory. So the question is:

What are the 4D physics?

States we expect:

$$B_{\mu\nu} \rightarrow 4$$
D Spin 2; $B_{\mu\nu} \rightarrow 4$ D Spin 1; $B_{yy} \rightarrow 4$ D Spin 0.

Continue to focus on Spin 2 state:

- Unusually high spin;
- Even under orbifold symmetry

 light compared to ye

 \Longrightarrow light compared to vector.

Note: Scalar also even under orbifold symmetry;

But odd (pathological?) behaviour, not distinctive.

Four-Dimensional Decomposition

Have now produced our 5D "String" theory. So the question is:

What are the 4D physics?

States we expect:

$$B_{\mu\nu} \rightarrow 4 \text{D Spin 2}; \qquad B_{\mu\nu} \rightarrow 4 \text{D Spin 1}; \qquad B_{yy} \rightarrow 4 \text{D Spin 0}.$$

Continue to focus on Spin 2 state:

- Unusually high spin;
- Even under orbifold symmetry

 \Longrightarrow light compared to vector.

Note: Scalar also even under orbifold symmetry; But odd (pathological?) behaviour, not distinctive.

Eliminating Mixing Terms

Problem: $B_{\mu\nu}$ contains vector, scalar components:

$$B_{\mu\nu} \sim B_{\mu\nu}^{(n)} + (\partial_{\mu}A_{\nu}^{(n)} + \partial_{\nu}A_{\mu}^{(n)}) + \dots$$

Equivalently, the action is not diagonal from the 4D perspective:

$$\mathcal{L} \supset \partial_{\mu} B^{\mu\nu} \, \partial_{y} B_{y\nu}.$$

Solution: Two different methods, lead to same result.

- Add pions to restore gauge invariance;
 Choose gauge where mixing terms vanish;
- Use non-trivial KK expansion to eliminate mixing terms.

Eliminating Mixing Terms

Problem: $B_{\mu\nu}$ contains vector, scalar components:

$$B_{\mu\nu} \sim B_{\mu\nu}^{(n)} + (\partial_{\mu}A_{\nu}^{(n)} + \partial_{\nu}A_{\mu}^{(n)}) + \dots$$

Equivalently, the action is not diagonal from the 4D perspective:

$$\mathcal{L} \supset \partial_{\mu} B^{\mu\nu} \, \partial_{y} B_{y\nu}.$$

Solution: Two different methods, lead to same result.

- Add pions to restore gauge invariance;
 Choose gauge where mixing terms vanish;
- Use non-trivial KK expansion to eliminate mixing terms.

The KK Spectrum I

Equation of Motion

So, isolating the tensor components of the free action:

$$\mathcal{L}_{4D} = \int dy \left[e^{2k|y|} \left(\frac{1}{4} H_{\lambda\mu\nu} H^{\lambda\mu\nu} - \frac{1}{2} H^{\lambda\mu}_{} H_{\lambda\nu}^{} \right) + \frac{1}{2} B_{\mu}^{\mu} \mathcal{D} B_{\nu}^{\nu} - \frac{1}{2} B_{\mu\nu} \mathcal{D} B^{\mu\nu} \right].$$

The mass operator \mathcal{D} is

$$\mathcal{D} \equiv -\partial_y^2 + 4k^2 + m^2 - 2k\,\partial_y\,\mathrm{sgn}(y).$$

Note: Eigenvalue equation is

$$\mathcal{D}f^{(n)} = \mu^{(n)^2} e^{2k|y|} f^{(n)},$$

with $\partial_y(e^{2k|y|}f^{(n)})$ continuous at the boundaries.

The KK Spectrum II

The solutions for $f^{(n)}$ are Bessel functions:

$$f^{(n)}(y) = \frac{1}{N} \left\{ J_{\nu} \left(\frac{\mu^{(n)}}{\Lambda_{IR}} w \right) + c J_{-\nu} \left(\frac{\mu^{(n)}}{\Lambda_{IR}} w \right) \right\};$$

$$w = e^{k(|y| - \pi R)} \in [e^{-k\pi R}, 1],$$
$$\nu \equiv \sqrt{4 + \mathfrak{m}^2};$$

$$N \sim \frac{\mathrm{e}^{k\pi R}}{\sqrt{k\pi R}}; \ c \sim \mathrm{e}^{-2\nu k\pi R}.$$

The KK Spectrum III Reggeon Masses

The Lightest Reggeon has mass (a few) $\times \frac{m}{k} \Lambda_{IR}$:

Reggeon-Standard Model Interactions

In 4D theory, all interactions have flat space form.

Only difference is Overlap Integral.

Example: Quark-Quark-Reggeon coupling,

$$\mathcal{L}_{qar{q}g^*} = \sum_n rac{ig_s ilde{g}_i^{(n)}}{\sqrt{2} ilde{M}_S} \left(\partial^\mu ar{q} \gamma^
u ilde{B}_{\mu
u} q - ar{q} \gamma^
u ilde{B}_{\mu
u} \partial^\mu q
ight).$$

 \tilde{M}_S is warped-down string scale:

$$\tilde{M}_S = \mathrm{e}^{-k\pi R} M_S \sim \mathrm{a} \; \mathrm{few} \; \mathrm{TeV},$$

while $\tilde{g}_{i}^{(n)}$ is KK wavefunction integral:

$$\tilde{g}_i^{(n)} = e^{-k\pi R} \int_0^{\pi R} dy \, e^{-k|y|} f^{(n)} Q_i^{(0)^2}.$$

Overlap Integrals

Table of effective couplings:

$\frac{m}{k}$	$rac{\mu^{(0)}}{\Lambda_{ m IR}}$	$ ilde{g}_{ ext{Glu}}$	$\tilde{g}^{(0)}(c=0.65)$	$\tilde{g}^{(0)}(c=0.5)$	$\tilde{g}^{(0)}(c=0)$
2.0	4.72	0.110	3.9×10^{-5}	0.110	2.9
3.0	5.56	0.107	3.8×10^{-5}	0.107	2.9
4.0	6.48	0.104	3.7×10^{-5}	0.104	2.9
5.0	7.45	0.100	3.5×10^{-5}	0.100	2.8

Cross Sections and Decay Rates

Figure: Decay Width (to SM)

Red Lines: Higgsless Model. Blue Lines: Higgsed Model. Branching fraction over 95% to Top Quarks.

A Proper Collider Study

A follow-up paper by Anchordoqui *et. al.* looked at detection prospects: [arXiv:1006.3044]

Background: Strings at the LHC
An Effective Field Theory
Phenomenology
Future Directions
Summary & Conclusions

Identifying the Reggeons

We have an RS model with a resonance that decays to tops.

Background: Strings at the LHC
An Effective Field Theory
Phenomenology
Future Directions
Summary & Conclusions

Identifying the Reggeons

We have an RS model with a resonance that decays to tops.

That's original!

We have an RS model with a resonance that decays to tops.

That's original!

How can we distinguish this from gravitons, KK gluons, ...?

- Spin;
- Decay patterns.

We have an RS model with a resonance that decays to tops.

That's original!

How can we distinguish this from gravitons, KK gluons, ...?

- Spin;
- Decay patterns.

We have an RS model with a resonance that decays to tops.

That's original!

How can we distinguish this from gravitons, KK gluons, ...?

- Spin;
- Decay patterns.

We have an RS model with a resonance that decays to tops.

That's original!

How can we distinguish this from gravitons, KK gluons, ...?

- Spin;
- Decay patterns.

Reggeon has spin 2.

⇒ Measure spin, either Reggeon or KK Graviton.

Doubly hadronic top decays allow "full" reconstruction of momentum, measure spin from this.

New Decay Modes

All studies so far have considered decays to SM ONLY. Decays to other RS states possible (KK excitations).

Summary & Conclusions

- RS models imply Stringy physics at the LHC;
- We have constructed a string-inspired Reggeon model;
- We expect up to 1000s of Reggeons at the LHC;
- We hope to identify the Reggeons via cascade decays.